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ABSTRACT

Ethylene (ET) plays a critical role in the activation

of plant defenses against different biotic stresses

through its participation in a complex signaling

network that includes jasmonic acid (JA), salicylic

acid (SA), and abscisic acid (ABA). Pathogen attack,

wounding, and herbivory trigger asymmetric acti-

vation of this defense signaling network, thereby

affecting the final balance of interactions between

its components and establishing a targeted response

to the initial threat. Ethylene’s contribution to the

modulation of this defense network relies on the

complexity of the regulation of multigene families

involved in ET biosynthesis, signal transduction,

and crosstalk and enables the plant to fine-tune its

response. The function of the members of these

multigene families is tightly regulated at transcrip-

tional, post-transcriptional, and post-translational

levels. It is generally accepted that ET cooperates

with JA in the activation of defenses against nec-

rotrophic pathogens and antagonizes SA-dependent

resistance against biotrophic pathogens. However,

this is likely an oversimplified view, because coop-

erative interactions between ET and SA pathways

have been reported and ET has been implicated in

the activation of defenses against some biotrophic

and hemibiotrophic pathogens. Therefore, deci-

phering ET’s place in this hormonal network is

essential to understanding how the cell orchestrates

an optimal response to a specific biotic stress.
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INTRODUCTION

Plants as sessile organisms have evolved intricate

hormonal networks to respond appropriately to

external stimuli. These networks allow plants to

react with exquisite precision to different biotic and

abiotic stresses. Ethylene (ET) alone and in combi-

nation with other hormones has been implicated as

one of the key players in the determination of the

most suitable genetic defense response. Neverthe-

less, the convoluted network interactions between

ET and other hormonal pathways, such as jasmonic

acid (JA), salicylic acid (SA), and abscisic acid

(ABA), in relation to defense are only beginning to

be fully appreciated (Xu and others 1998; Lorenzo

and others 2003; Veselov and others 2003; Zhao and

others 2004).

Exogenous treatments of ET and/or its precursors,

as well as ET inhibitors, have demonstrated clear

links between this volatile plant hormone and a
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plant’s defense responses (Beckman 2000; Kamo and

others 2000; Nakazato and others 2000). The avail-

ability of mutant and transgenic plants with an

altered functionality of ET-signaling components, as

well as phytoalexin detoxification knock-out mu-

tants in pathogens, has allowed ET’s effect on defense

to be studied in vivo without the problems associated

with exogenous chemical treatments (Rojo and

others 2003; Guo and Ecker 2004; Glazebrook 2005;

Lorenzo and Solano 2005).

At present, it is generally accepted that ET coop-

erates with JA in the activation of defenses against

necrotrophic pathogens and that it antagonizes SA

dependent resistance against biotrophic pathogens

(Knoester and others 1998; Thomma and others

1998, 1999; Berrocal-Lobo and others 2002; Diaz

and others 2002; Rojo and others 2003; Lorenzo and

Solano 2005). However, this is likely an oversim-

plified view because cooperative interactions be-

tween ET and SA pathways have been reported and

ET has been implicated in the activation of defenses

against some biotrophic and hemibiotrophic patho-

gens. A comprehensive list of ET-associated mutant

and transgenic plants and their susceptibility to

pathogens has been presented recently by van Loon

and others (2006).

Ethylene’s contribution to the determination of

the appropriate defense response to any given biotic

stress relies on the complexity of the regulation of

multigene families involved in ET biosynthesis,

signal transduction, and crosstalk. Understanding

ET’s place in this hormonal network is all the more

important because of its broad regulatory function

in the plant’s physiology.

Within this review we aim to highlight the most

important aspects of the ethylene-dependent de-

fense response, encompassing pathogen attack,

wounding, and herbivory. This discussion will begin

with defense-induced ET production, before con-

sideration of ET-dependent plant responses and the

ET-induced arsenal. The greatest portion of this re-

view reflects the growing appreciation of the hor-

monal network’s importance in plant defense. Thus,

the developments in our understanding of ET-re-

lated cis- and trans-regulatory elements and their

regulation are discussed before network interactions

between ET and other phytohormones or defense

systems are examined.

REGULATION OF ET BIOSYNTHESIS BY

BIOTIC STRESS

The specific recognition of different wound-derived

and pathogen elicitor molecules, such as plant cell

wall oligosaccharides and bacterial virulence factors,

constitutes the first stimulus leading to ET produc-

tion (Avni and others 1994; Rojo and others 1999;

Nimchuk and others 2003; Glazebrook 2005; Zhao

and others 2005).

Ethylene biosynthesis is a very tightly regulated

pathway, including overlapping transcriptional and

post-transcriptional points of control for the en-

zymes involved. This redundant regulation suggests

that ET modes of action are modulated by its con-

centration rather than purely by its presence or

absence (Pierik and others 2006).

Methionine constitutes the essential ‘‘fuel’’ for

the first step of ET production by S-AdoMet syn-

thase (SAM synthase; Peleman and others 1989).

However, conversion of S-AdoMet to 1-aminocy-

clopropane-1-carboxilic acid (ACC) by ACC syn-

thase (ACS) is considered the rate-limiting step in

ET production. Therefore, since the cloning of the

first ACS gene from Cucurbita pepo (Sato and Theo-

logis 1989), considerable efforts have been made to

study this multigene family. Consequently, the ACS

gene family is now known in Arabidopsis to include

12 members, only eight of which appear to be in-

volved in ET biosynthesis (Yamagami and others

2003).

The impact of different abiotic stimuli and

wounding on ACS gene expression has been thor-

oughly studied by means of traditional and whole

genome analyses (Cheong and others 2002; Tsuchi-

saka and Theologis 2004a, 2004b). However, reports

focusing on ACS behavior in relation to pathogen

attack and herbivory are scarce. Nevertheless, Bro-

ekaert and others (2006) have recently offered a brief

overview of the ACS transcriptional regulation fol-

lowing biotic stress by analysis of the Genevestigator

database (Zimmermann and others 2004). This

analysis shows that ACS2, ACS5, and ACS6 represent

a major focus of transcriptional regulation after

pathogen challenge. However, other members of the

ACS gene family show redundant and overlapping

expression patterns in response to different patho-

gens. The complexity of these patterns illustrates the

importance of fine-tuning ET levels to determine the

appropriate response against each particular threat.

An additional level of complexity is added to

ACS function by post-transcriptional regulation

via both phospho/dephosphorylation balance and

homo-heterodimerization (Tsuchisaka and Theolo-

gis 2004a; Chae and Kieber 2005). ACS phosphory-

lation balance was first linked to the control of ET

production rates in tomato (Spanu and others 1994).

More recently, tomato CDPK and MAPK6 have been

isolated as the main regulators of ACS stability that

lead to the stimulation of ET production upon
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wounding (Liu and Zhang 2004; Chae and Kieber

2005). Each kinase modulates specifically one of two

different sets of ACS proteins, each set exhibiting

specific phosphorylation target sequences within its

C-terminal regions. Thus, although CDPK contrib-

utes to the stability of ACS4, 5, 8, and 9, a MAPK-

dependent pathway is involved in preventing the

turnover of ACS2 and 6. Moreover, a conserved

domain in monocotyledonous and dicotyledonous

plants that is specifically recognized by the ETO1,

EOL1, and EOL2 proteins and known as TOE is lo-

cated adjacent to the CDPK target sequence (Yoshida

and others 2006). These proteins are members of the

BTB family and have recently been demonstrated to

be the variable part of the CUL3 based E3 ubiquitin–

ligase complex (Gingerich and others 2005; Stogios

and others 2005; Weber and others 2005). Thus, ETO

proteins are involved in the turnover of ACS, tar-

geting ACS4, 5, 8, and 9 to degradation by the 26S-

proteasome pathway (Wang and others 2004; Chae

and Kieber 2005). Interestingly, EOL2 is the only

member of this multigene family transcriptionally

regulated in response to biotic stimuli within the

Genevestigator database, being slightly enhanced by

Pieris rapae.

Homodimerization and heterodimerization

among different members of the ACS protein family

constitutes an additional level of regulation of their

activity, further highlighting the complexity of ET

biosynthesis. Different combinations give rise to

dimers showing different substrate affinity and

thus different efficiency toward ACC synthesis

(Tsuchisaka and Theologis 2004a). This regulatory

redundancy may contribute significantly to the

fine-tuning mechanism that controls ACS activity

and highlights the importance of ET levels in

ensuring an accurate defense response against dif-

ferent stimuli.

The final conversion of ACC to ET, cyanide, and

carbon dioxide is carried out by ACC oxidase (ACO).

Like ACS, ACO proteins are encoded by multigene

families in various plant species. Thus, in tomato

and Arabidopsis, for instance, ACO gene families are

composed of 4 and 6 members, respectively (Babula

and others 2006).

Root colonization by Pseudomonas fluorescens bac-

teria has been shown to enhance ACO activity

in vivo. In turn, this potentiates expression of PDF1.2

and HEL after treatment of the leaves with 1 mM

ACC and results in a significantly higher level of

ethylene emission after infection with the bacterial

pathogen Pseudomonas syringae pv. tomato DC3000/

avrRpt2 (Hase and others 2003). To date, tran-

scriptional activation of ACO genes has been de-

scribed in response to the potato A virus in potato

(Nie and others 2002), tobacco mosaic virus (TMV)

in tobacco, fungal elicitors in tobacco and ginseng

(Kim and others 1998; Xu and others 2005), and,

more recently, to Pseudomonas syringae infection in

tomato, where AvrPto and AvrPtoB are involved in

the induction of two ACO genes (Cohn and Martin

2005). Further, the differential expression of

members of this gene family in response to several

biotic stresses has been confirmed by analysis of the

Genevestigator database (Zimmermann and others

2004).

The expression levels of ACO1 and ACO2 genes

are upregulated by Botrytis cinerea infection. Ad-

ditionally, ACO4 and ACO5 are upregulated upon P.

rapae attack. In contrast, both Alternaria brassicicola

and Erysiphe cichoracearum downregulate the

expression of ACO3. Interestingly, wounding of

sunflower hypocotyls enhances transcription of

ACO genes, but it has no effect on their protein

levels (Liu and others 1997). Again, this suggests

the existence of additional post-transcriptional

controls yet to be identified, and it adds another

level of complexity to the defense-related ET bio-

synthesis.

It is significant that several plant pathogens can

produce ET themselves. Indeed, some P. syringae

pathovars have shown an ability to synthesize this

phytohormone both in vitro and in planta from

methionine by means of the KMBA (2-keto-4-

methylthiobutyric acid) pathway (Weingart and

others 2001). This ability, together with the pro-

duction of the jasmonate analog coronatine and

auxins by the same microorganisms may contribute

to hormonal saturation and circumvention of an

appropriate defense response (Robinette and Mat-

thysse 1990; Cui and others 2005; Sreedharan and

others 2006). For instance, moderate ET concen-

trations stimulate the production of phytoalexin

b-thujaplicin, whereas excessive ET has been shown

to reduce its level below that of untreated plants

(Zhao and others 2004). Moreover, activation of the

ET pathway has a detrimental effect on SA-depen-

dent defenses (Lorenzo and Solano 2005). More

recently, Ralstonia solanacearum has been seen to

produce ET and auxin by means of the HrpG regu-

lon (Valls and others 2006). The increase of both

phytohormones is simultaneous with TTSS (type

three secretion system) gene expression and con-

tributes to the plant defense imbalance that favors

pathogen infection.

Paradoxically, therefore, the highly regulated ET

biosynthesis, which allows plants to fine-tune

defense responses to specific threats, may be

used by ET-producing pathogens to circumvent

defenses.
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SPATIAL PATTERNS OF ET-DEPENDENT

DEFENSES

The ability of a plant to express different defense

genes in local and systemic tissues represents a

modulation of defenses to maximize impact on the

pathogen and minimize cost to the plant (Baldwin

1998). Ethylene has been revealed to be pivotal in

the regulation of the local/systemic patterns of de-

fense activation. For example, ET is known to re-

press JA-responsive genes in locally damaged tissue

while having no effect on their expression system-

ically (Zhu-Salzman and others 1998; Rojo and

others 1999). In agreement with the idea that ET

functions locally rather than systemically after

wounding, tobacco plants have been found to need

ET to generate, but not receive, the SAR signal in

response to TMV (Verberne and others 2003).

Grafting experiments using wild-type and ET-

insensitive transgenic tobacco plants (Tetr) indi-

cated that Tetr rootstock was unable to produce,

release, or transmit the mobile signal to wild-type

scions, but conversely, Tetr scions exhibited SAR

when grafted to wild-type infected rootstock.

Intriguingly, SAR in other plant species is ET inde-

pendent (Lawton and others 1995).

Fine-tuning of local versus systemic defense re-

sponses by ET has been highlighted in Nicotiana at-

tenuata by Kahl and others (2000). They found that

ET locally decreased nicotine accumulation in

leaves following herbivory by larvae of the nicotine-

intolerant Manduca sexta. However, local volatile

terpenoids and endogenous JA pools remained

unaffected. It was hypothesized that this adaptive

tailoring of defenses would reduce nicotine uptake

by the larvae, thereby making them more suscep-

tible to their nicotine-sensitive parasitoids. Further

to this tailoring of defenses, ET has been suggested

to regulate, in a highly localized manner, the

number and positioning of symbiotic infection

events between Rhizobium meliloti and Medicago

truncatula (Penmetsa and Cook 1997; Veereshlin-

gam and others 2004).

Root colonization by certain other rhizosphere

bacteria confers a form of systemic disease resistance

called induced systemic resistance (ISR; Pieterse and

others 1998; van Loon and others 1998). Induced

systemic resistance requires responsiveness to ET

and JA but is independent of SA accumulation de-

spite its dependence on NPR1 (Pieterse and others

2000). Remarkably, rather than increasing levels of

ET and JA or accumulation of PR genes, ISR primes

ET and JA responses to pathogens following infec-

tion. ISR1, a locus required for ISR signaling, has

been suggested to encode a component of the ET-

response pathway because isr1 accessions showed

an impaired triple-response phenotype and a re-

duced expression of the ET-responsive genes HEL

and PDF1.2 after exogenous application of ACC (Ton

and others 1999, 2001).

Finally, ET has been implicated in both local and

systemic defense responses to A. brassicicola through

its regulation of GLIP1. This secreted lipase has

antifungal properties and is induced by ET but not

by SA or JA (Oh and others 2005).

INTER-ORGANISM COMMUNICATION

It is noteworthy that ET activation of defenses may

not be limited to local versus systemic within-plant

signaling. Data are accumulating to indicate that ET

may also function both in plant–herbivore and

plant–plant communication. The release of volatile

compounds by plants and the importance of ET

within this process have been well studied in rela-

tion to insect herbivory, where ET’s role appears

synergistic to that of JA or even SA (O’Donnell and

others 1996; Arimura and others 2000; Farmer

2001; Schmelz and others 2003).

There is also accumulating evidence that, like

methyl jasmonate (Farmer and Ryan 1990; Karban

and others 2000, 2003), ET operates as a plant–plant

defense signaling molecule. Tscharntke and others

(2001) following laboratory and field-based study of

induced phenols and proteinase inhibitors proposed

that ET transferred pathogen resistance to neigh-

boring alder trees. Moreover, ET can synergize

(Z)-3-hexen-1-ol’s induction of herbivore-induced

volatile organic compounds (HI-VOC) in intact

maize plants (Ruther and Kleier 2005). HI-VOCs

attract natural enemies of certain plant-eating in-

sects, thereby reducing herbivory (Kessler and

Baldwin 2001; Engelberth and others 2004). How-

ever, like methyl jasmonate plant–plant signaling, it

is probable that ET plant–plant signaling will be

limited to short distances (around 10 cm), and thus

is only likely to affect other branches of the

ET-producing plant or intertwined canopies

(Karban and others 2003; Baldwin and others

2006). Accordingly, ET has been implicated in the

shade-avoidance response (Knoester and others

1998), and it has been argued that measured

neighbor-derived atmospheric ET levels are suffi-

ciently high to influence surrounding plants (Pierik

and others 2004).

In contrast, however, not all interorganism com-

munication related to ET is beneficial to the plant.

The EIN2- and EIN3-dependent hypersusceptibility
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of the Arabidopsis mutant rhd1-4 to the cyst

nematode Heterodera schachtii has been attributed, at

least in part, to juvenile nematodes’ being more

attracted to the roots in wild-type plants than in ein2

or ein3 mutants (Wubben and others 2001, 2004).

ETHYLENE-MEDIATED DEFENSE RESPONSES

Wounding, herbivory, and pathogen challenge ulti-

mately lead the plant to accumulate defensive com-

pounds directed toward reinforcing either structural

or chemical barriers against the threat. Physical bar-

riers often offer the first line of defense against

pathogen attack. After all, the cell wall must be

breached if the nutrients contained within are to be

appropriated. Although ET has no effect on defense-

related callose deposition (Ton and Mauch-Mani

2004), it certainly contributes to other wound- or

pathogen-induced defenses, as described below.

Xylem Occlusions

After wounding, one of the highest priorities for the

plant is to seal the site and thereby restrict oppor-

tunistic pathogen ingression (de Bruxelles and

Roberts 2001). Ethylene has been discovered to

help in this process. For example, stimulation of

vascular gel production in explant castor bean

leaves is ET dependent (VanderMolen and others

1983). Indeed, this gel, which blocks the xylem

vessels in a manner similar to that after infection by

the vascular pathogen Fusarium oxysporum, is pro-

duced in response to ET. VanderMolen and others

(1986) went on to determine that this gel is rich in

host cell wall components (neutral sugars and

uronic acids), and Beckman (2000) suggested that it

was later lignified, and thus reinforced, by the

infusion of phenolics.

In an interesting twist, this ET-induced blocking

of the xylem vessels, which has evolved to protect

the plant from infection, has been commandeered

by Agrobacterium tumefaciens to augment gall for-

mation. Aloni and others (1998) described how

wild-type tomato plants react to Agrobacterium-

stimulated ET by restricting vessel diameter above

the gall and producing a rough, unorganized callus

surface. These adaptations, thought to ensure wa-

ter-supply priority to the growing gall, were re-

duced or absent in the tomato ET mutant Never

ripe.

Veselov and others (2003) have subsequently

published that gall-derived and exogenously ap-

plied ET increased ABA concentrations in the host

leaves, which in turn reduced water vapor con-

ductance. Additionally, the development of these

galls and the impact on the host’s shoots is com-

plex, with not only ET but many other plant

hormones playing a role, including JA, auxin,

cytokinin, and ABA.

Cell Wall-strengthening Hydroxyproline-rich
Glycoproteins (HRGPs)

One of the most rapid responses to pathogen

attack involves the insolubilization of pre-existing

hydroxyproline-rich structural proteins. This can

happen within two minutes of fungal elicitor treat-

ment, and thus it precedes transcription-dependent

defenses (Bradley and others 1992). More recently, a

class III peroxidase (extensin peroxidise: ep) has been

shown in vitro and in situ to specifically crosslink an

89.9-kD HRGP, extensin (GvP1), within less than 10

minutes (Jackson and others 2001). It has been

proposed that defensive modes of action for HRGPs

may include cell wall strengthening and ionic

agglutination of certain plant pathogens (Showalter

1993).

As long ago as 1979, Esquerre-Tugaye and others

revealed that ET-induced HRGP correlated with

resistance to pathogen invasion (Colletotrichum la-

genarium) and inversely, when inhibited, disease

progression was enhanced. The first in vivo data

showing the effect of ET on cell wall HRGP came

from Toppan and others (1982). They reported that

inhibitors of endogenous ET production, when ap-

plied in non-toxic quantities, lowered HRGP.

Additionally, when ACC was applied to healthy

plant tissue, ET and HRGP were concomitantly

stimulated. These workers later established that an

elicitor from C. lagenarium was sufficient to induce

ET and HRGP, and, by using an inhibitor of ET

synthesis (aminoethoxyvinylglycine), that HRGP

production was dependent on the elicitor-induced

ET (Roby and others 1985).

Phytoalexins

Phytoalexins are plant defensive compounds of low

molecular weight produced de novo in response to

pathogen attack (Morrissey and Osbourn 1999). An

overwhelming amount of circumstantial evidence

exists that these secondary metabolites have an

antimicrobial role in vivo, but most concrete data has

been derived recently, using molecular genetic

approaches (Dixon 2001). For example, although

camalexin (3-thiazole-2-ylindole) was found to

inhibit the growth of Cladosporium cucumerium and

164 B. Adie and others



P. syringae in vitro and to be produced in vivo, direct

evidence for in vivo efficacy was only presented when

camalexin-deficient Arabidopsis pad mutants were

generated (Tsuji and others 1992; Glazebrook and

Ausubel 1994; Glazebrook and others 1997).

Although subsequent testing has shown that ET

appears to play no role in the induction of cam-

alexin (Thomma and others 1999), it does func-

tion in the production of other phytoalexins.

Indeed, ET has even been implicated in the

transcriptional induction of the phytoalexin elici-

tor-releasing factor, b-1,3-endoglucanase, in soy-

bean (Takeuchi and others 1990). Examples of

ET-dependent or ET-related phytoalexins include,

isocoumarin in carrot roots (Fan and others 2000),

sakuranetin in rice leaves (Nakazato and others

2000), and b-thujaplicin in Mexican cypress (Zhao

and others 2004). The induction of this third

example (b-thujaplicin) is interesting because it

involves the interaction of ET and JA. While JA is

deemed the ‘‘main control,’’ ET is considered a

‘‘fine modulator’’ because of its diminished

capacity to induce b-thujaplicin and apparent JA

dependency.

PR Proteins

Pathogenesis-related (PR) proteins are the most

extensively studied set of defense molecules in

relation to ET. They constitute a broad class of

inducible defense-related proteins expressed either

locally or systemically in response to biotic stress.

Pathogenesis-related proteins have been described

in many plant species and are classified into 17

families according to their structural and func-

tional features (van Loon and van Strein 1999;

van Loon and others 2006). Antimicrobial activi-

ties of different PRs have been described as acting

through contact toxicity or hydrolytic activity.

Extensive work in the last two decades has dem-

onstrated the broad role of ET in the regulation of

expression of different classes of PR genes, such as

PR–2 (b-1,3-glucanases), PR-3 (basic-chitinases), PR-4

(hevein-like), and PR-12 (plant defensins, PDFs)

(Broglie and others 1989; Samac and others 1990;

Penninckx and others 1996, 1998; Thomma and

others 1998, 1999, 2002; van Loon and others

2006). However, ET does not regulate the

expression of these genes alone, but as a compo-

nent of a complex network of signaling molecules

that, in addition to ET, includes SA, JA, and ABA.

Therefore, understanding the role of ET in the

transcriptional regulation of PR genes (or other

defense-related genes) requires the understanding

of the composition and dynamics of this signaling

network. In the following sections we focus on the

different components of ET-mediated transcrip-

tional regulation, and on the interactions of these

components with other hormonal signaling path-

ways.

TRANSCRIPTIONAL REGULATION OF

DEFENSE-RELATED GENES BY ET

Current understanding of ET’s transcriptional reg-

ulation of many PR genes has been accomplished by

employing two different strategies. On one hand,

the molecular analysis of cis-elements and trans-

acting factors responsible for ET inducibility yielded

several relevant promoter elements and transcrip-

tion factors that interact with them. On the other

hand, a genetic approach based on the Arabidopsis

‘‘triple response’’ has allowed the identification of

several classes of mutants impaired in the response

to the hormone (Wang and others 2002; Guo and

Ecker 2004). Molecular analysis to elucidate the

biochemical function of the proteins identified by

these mutations has helped uncover the players that

participate in the ET-mediated transcriptional reg-

ulation and to merge the two approaches.

The molecular approach: cis-elements and
trans-acting factors

Analysis of the promoters of some of the above-

mentioned PR genes identified a common cis-ele-

ment required for ET regulation. This common

cis-element (11-bp sequence TAAGAGCCGCC),

called the GCC box or ethylene response element

(ERE), was shown to be necessary, and in some

cases sufficient, for ET regulation of PR genes in

different plant species (Broglie and others 1989;

Ohme-Takagi and Shinshi 1990; Roby and others

1991; Eyal and others 1993; Hart and others 1993;

Meller and others 1993; Ohme-Takagi and Shinshi

1995; Shinshi and others 1995; Penninckx and

others 1996; Solano and others 1998; Fujimoto and

others 2000; Gu and others 2000; Brown and others

2003; Chakravarthy and others 2003). The GCC box

is also present in the promoter of ET-regulated

genes that are not obviously involved in the path-

ogen response (that is, Hookless1; Lehman and oth-

ers 1996), suggesting a broader role for this element

in the transcriptional regulation by ET.

Several independent groups reported the exis-

tence of proteins that were able to bind the GCC box

in vitro (Hart and others 1993; Alonso and others
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1995; Ohme-Takagi and Shinshi 1995; Shinshi and

others 1995; Zhou and others 1997; Fujimoto and

others 2000). Using a DNA fragment containing this

element as a probe in southwestern experiments,

four members of a family of DNA-binding proteins

termed ethylene-responsive-element-binding-pro-

teins (EREBPs or ERFs) were identified in tobacco

(Ohme-Takagi and Shinshi 1995). In vitro DNA-

binding experiments using truncated versions

of these proteins delineated their DNA-binding

domain to a 59-amino acid region that is well

conserved among them and is similar to the DNA-

binding domain of the homeotic protein APETALA2

(AP2; Ohme-Takagi and Shinshi 1995; reviewed in

Riechmann and Meyerowitz 1998; and in Gutterson

and Reuber 2004).

The ERF/AP2 superfamily is today one of the

largest families of transcription factors (TFs) in

plants, comprising three different subfamilies char-

acterized by the number of ERF domains and the

presence of additional DNA-binding domains. The

AP2 subfamily contains two repeated ERF domains.

The ERF subfamily contains a single ERF domain,

and the RAV subfamily proteins contain an addi-

tional DNA-binding motif, the B3 domain. In

Arabidopsis, for instance, the ERF subfamily consists

of over 120 members (Riechmann and Meyerowitz

1998; Riechmann and others 2000; Sakuma and

others 2002; Nakano and others 2006a).

The AP2/ERF DNA-binding domain is exclusive

to plant transcription factors, although proteins

with other functions (endonucleases) containing

this domain have been reported in both bacteria and

viruses (Magnani and others 2004). A 3D solution

structure of the ERF/AP2 domain of AtERF1

showed that it consists of a 3-stranded anti-parallel

b-sheet and an a-helix packed approximately par-

allel to the b-sheet. Arginine and tryptophan resi-

dues in the b-sheet contact 8 of the 9 consecutive

base pairs in the major groove, showing the

importance of the b-sheet in the determination of

the DNA target specificity (Allen and others 1998).

Further characterization of the DNA-protein inter-

actions has comprehensively shown the residues of

the GCC box that are essential for the recognition of

the ERF proteins (2nd G, 5th G, and 7th C of the

GCC box; Hao and others 1998), and that GCC box

flanking nucleotides influence binding affinity of

ERFs (Gu and others 2002; Tournier and others

2003).

Although most of the ERF TFs described to date

function as transcriptional activators, repressors of

transcription from several plant species have also

been reported (Ohta and others 2001; Kazan 2006).

These repressors, which include 8 members in the

Arabidopsis ERF gene subfamily, share a conserved

domain (L/FDLNL/F(x)P) within the C-terminal

region of the protein, designated the EAR motif

(Ohta and others 2001; Yang and others 2005;

Kazan 2006).

Insights into the functionality of ERF subfamily

members in different species have suggested, in

several instances, their involvement in ET signaling

and/or ET-activated defenses, including ERF1,

AtERF2, AtERF3, AtERF4, AtERF13, and AtEBP in

Arabidopsis, Pti4 in tomato, Tsi1 and OPBP1 in

tobacco, and CaERFLP1 in hot pepper (Buttner and

Singh 1997; Zhou and others 1997; Solano and

others 1998; Fujimoto and others 2000; Park

and others 2001; Berrocal-Lobo and others 2002;

Oñate-Sánchez and Singh 2002; Lorenzo and others

2003; Berrocal-Lobo and Molina 2004; Guo and

Ecker 2004; Lee and others 2004; McGrath and

others 2005; Yang and others 2005). Independent of

their biochemical activity as transcriptional activa-

tors or repressors, ERF family members can function

as activators or repressors of particular defense

pathways, often with opposing effects, resulting in

resistance or susceptibility to different pathogens.

For instance, AtERF2 or AtERF4 overexpression re-

sults in opposing disease-resistance phenotypes after

infection by F. oxysporum (McGrath and others

2005). Furthermore, transcriptional activation of

Arabidopsis ERF1 enhances resistance to several

necrotrophic pathogens including B. cinerea,

Plectosphaerella cucumerina and F. oxysporum, but in-

creases susceptibility to the biotrophic bacteria

P. syringae (Solano and others 1998; Berrocal-Lobo

and others 2002; Berrocal-Lobo and Molina 2004).

Additionally, and with regards to hemi- and bio-

trophic challenge, Arabidopsis plants expressing Pti4

from tomato display increased tolerance to the

bacterial pathogen P. syringae pv. tomato and in-

creased resistance to the fungal pathogen Erysiphe

orontii (Gu and others 2002). Tsi overexpression

induces enhanced levels of several PR proteins, in

cooperation with TSIP, resulting in improved tol-

erance to pathogens, such as P. syringae pv. tabaci in

tobacco (Park and others 2001; Ham and others

2006). Additional examples of ET-induced ERFs

whose overexpression enhances pathogen resis-

tance include CaERFLP1 and OPBP1 (Guo and

Ecker 2004; Lee and others 2004).

Ethylene genetic reprogramming includes chro-

matin rearrangements that enable the transcrip-

tional regulation of ERFs. Thus, the histone

deacetylase HDA19 has recently been implicated in

the regulation of PR gene expression through the

activation of ERF1 and possibly other ERFs (Zhou

and others 2005). In addition, HDA19 has been
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connected with AtERF7’s ability to inhibit their target

genes (Song and others 2005). Another histone de-

acetylase (RPD3b/HDA6) has been shown to interact

with COI1 (in yeast two-hybrid assays) and thus

suggests a regulatory role for this enzyme in the

crosstalk with the JA signaling pathway (Devoto and

others 2002).

Finally, phosphorylation has been proposed as a

mechanism of post-transcriptional regulation of ERF

genes (Yamamoto and others 1999). The involve-

ment of protein kinases has been reported in ET

signal transduction and in the transactivation of

GCC box-dependent transcription. Pti4 phosphory-

lation by Pto kinase enhances protein activity

(Gu and others 2000). In rice, OsEREBP1 binds GCC

box elements of several PR gene promoters,

and a MAPK, BWMK1, phosphorylates OsEREBP1,

enhancing its DNA-binding activity (Cheong and

others 2003). Moreover, putative sites for MAP ki-

nase-mediated phosphorylation (PXXSPXSP) have

been found in the class III protein AtERF5, but not

in classes I and II (Fujimoto and others 2000).

These examples illustrate, as in the case of the

regulation of ET biosynthesis described above, the

complexity of the regulation of repressor and acti-

vator-types of ERFs during pathogen challenge and

their potential to fine-tune defense gene expression

and disease resistance.

The Genetic Approach: the EIN3/EIL Family
of TFs

Genetic analysis based on the ‘‘triple response’’

phenotype identified many mutants, including eth-

ylene-insensitive3, that impair plant responses to ET.

Cloning of the EIN3 gene (Chao and others 1997)

identified the first member of a new family of pro-

teins exclusive to plants that now includes five

additional EIN3-LIKE (EIL) proteins. EIN3 and EIL1

have partially redundant functions, and both are

required for full activation of ET responses (Chao

and others 1997; Alonso and others 2003). More-

over, overexpression of EIN3 or EIL1 in transgenic

wild-type or ethylene-insensitive2 mutant plants con-

ferred constitutive ET response phenotypes at all

stages of development, indicating their sufficiency

for activation of the pathway in the absence of ET

(Chao and others 1997). The implication of other

members of the EIN3/EIL family in the activation of

ET responses has been reported in Arabidopsis and

other species (Chao and others 1997; Tieman and

others 2001; Rieu and others 2003; Chen and others

2004). Subcellular localization of EIN3 in the

nucleus has suggested its putative function as a

transcription factor (Chao and others 1997). Al-

though these proteins do not contain any previously

described DNA-binding motif, in vitro DNA-binding

assays demonstrated that, indeed, EIN3, EIL1, and

EIL2 are sequence-specific DNA-binding proteins

that interact with 5¢ sequences in the ERF1 pro-

moter (Solano and others 1998).

Determination of the EIL3 solution structure by

NMR spectroscopy has shown that this new DNA-

binding domain consists of five a-helices, possessing

a novel fold dissimilar to known DNA-binding do-

main structures (Yamasaki and others 2005).

Interestingly, the EIN3 binding target shares sig-

nificant base identity with the sequences defined as

ET response elements in the promoter regions of

tomato E4 and LEACO1 genes and carnation GST1

(Montgomery and others 1993; Itzhaki and others

1994; Blume and Grierson 1997). Thus, the EIN3

DNA target site is a primary ethylene response ele-

ment (PERE) conserved among different species and

involved in the regulation of primary ET-response

genes, including ERF1 (Figure 1). On the other

hand, the GCC box represents a secondary ethylene

response element (SERE) present only in a subset of

the ET-regulated genes such as pathogenesis-related

genes, HOOKLESS1, and some ERFs that may be

regulated by a subgroup of the ERF family of pro-

teins. Therefore, ET signaling in the nucleus occurs

through a cascade of TFs involving at least two

families, the EIN3/EILs and the ERFs.

EIN3/EIL protein stability is regulated by EBF1/2

proteins. EBF1 and EBF2 are F-box components of

the CUL1-dependent E3-ligase complex. Thus,

EBFs’ interaction with EIN/EIL proteins leads to

their ubiquitination and subsequent degradation by

the 26S proteasome pathway (Potuschak and others

2003; Guo and Ecker 2003). Interestingly, neither

EBF1 nor EBF2 is significantly upregulated or

downregulated following biotic stress responses in

the Genevestigator database.

ETHYLENE’S ROLE IN THE DEFENSE

RESPONSE NETWORK

A plant’s resistance to attack is not the result of iso-

lated defense pathways, but rather, is based on a

complex network of interactions between different

signals, including not only ET but also JA, SA, and

ABA (Figure 2). The modulation of this network

allows the plant to fine-tune its response to a specific

threat. Thus, the dissection of ET’s role in plant de-

fense requires an understanding of its place within

the network and the way this hormonal pathway
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interacts with others. Microarray analysis is begin-

ning to unravel the intricacies of ET’s interaction

with different phytohormones (Maleck and others

2000; Schenk and others 2000; Van Zhong and Burns

2003; Nemhauser and others 2006). However, whole

genome analysis is in its infancy and is only avail-

able for a limited number of species. Consequently,

although these studies have confirmed many points

of confluence between ET and some plant hormones

(JA, SA, and ABA), they often pose more questions

than they answer with regard to other plant hor-

mones (auxin, brassinosteroid, cytokinins, and gib-

berellic acid). Nevertheless, in combination with

complementary technologies, transcriptome analy-

ses have the potential to greatly advance our

understanding of integrated plant defense.

Ethylene and JA

The widely held belief is that ET acts coopera-

tively (or synergistically) with JA in the activation

of responses to pathogens and antagonistically in

response to wounding (Rojo and others 2003;

Lorenzo and Solano 2005). Ethylene and JA

have been demonstrated to act synergistically in

the expression of several defense-related genes,

including PR1b, PR3 (chitinases), PR4 (hevein-like

proteins), PR5 (osmotin), and PDF1.2 (Xu and others

1994; Penninckx and others 1998; Thomma and

others 1998, 1999; Lorenzo and others 2003).

Additionally, mutants in either ET and/or JA de-

fense pathways increase susceptibility to necro-

trophic pathogens (Knoester and others 1998;

Staswick and others 1998; Thomma and others

1999).

One of the most extensively studied ET- and JA-

dependent genes is the fungicidal peptide PDF1.2.

Induced after infection of necrotrophic fungi such as

A. brassicicola or B. cinerea, it is already a ‘‘classical’’

marker to follow ET- and JA-dependent activation

of defense responses after biotic stress (Penninckx

and others 1996, 1998; Thomma and others 1998,

1999). PDF1.2 gene induction requires simultaneous

ET and JA signaling (Penninckx and others 1998),

with these hormones operating through ERF1

(Figure 2). This TF is induced synergistically by ET

and JA, and mutations that block either of these

pathways are sufficient to prevent ERF1 induction

and concomitantly its anti-pathogenic target genes

(Solano and others 1998; Lorenzo and others 2003).

In accordance, overexpression of ERF1 triggers the

activation of defense genes like PDF1.2 and PR3 and

enhances resistance against various necrotrophic

pathogens (Berrocal-Lobo and others 2002; Berro-

cal-Lobo and Molina 2004). Furthermore, tran-

scriptome analysis has shown that ERF1 regulates a

Figure 1. Schematic illustration of the ethylene gas signaling pathway. Binding of ethylene (C2H4) leads to inactivation

of its receptors and in turn the deactivation of a Raf-like kinase CTR1. This allows EIN2 to function and signal positively

downstream to the EIN3/EILs families of transcription factors located in the nucleus. EIN3 directs the expression of ERF1

and other primary target genes by binding directly, as a dimer, to the primary ethylene response element (PERE) present

in their promoters. ERF1, and probably other ERFs, bind to the secondary ethylene response element (SERE/GCC box)

and activate the expression of defense effector genes such as PRs.
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high percentage of ET/JA-dependent responses,

especially those related to defense (Lorenzo and

others 2003). However, loss-of-function erf1 mu-

tants do not show enhanced susceptibility to

pathogens or reduced defense gene expression,

suggesting that other ERF genes may share redun-

dant functions (O. Lorenzo and R. Solano, unpub-

lished data). In line with this idea, several reports

have shown ERF genes with patterns of expression

and functional properties similar to those of ERF1

(Chen and others 2002; Onate-Sanchez and Singh

2002; Brown and others 2003; McGrath and others

2005). Indeed, Nakano and others (2006b) have

recently described ET/JA-dependent expression of

the CEJ1 gene in Arabidopsis. Further analysis by

means of Genevestigator (Zimmermann and others

2004) implicates CEJ1 in the response against sev-

eral pathogens and shows it to have an expression

pattern similar to that of ERF1.

Other gain-of-function studies support the coop-

eration of ET and JA in the activation of defense

responses to pathogens. The Arabidopsis mutant cev1,

which constitutively activates both ET and JA sig-

naling pathways, also shows constitutive expression

of defense-related genes PDF1.2, b-CHI, Thi2.1, VSP1,

and VSP2. Accordingly, this mutant also exhibits

enhanced resistance to powdery mildew diseases

(Ellis and Turner 2001; Ellis and others 2002).

Additionally, the simultaneous requirement of

ET and JA for wound-induced Pin2 expression in

tomato has been reported (O’Donnell and others

1996). However, in contrast to the findings of

O’Donnell and others (1996) in tomato, it has been

widely demonstrated that ET prevents the JA-

mediated induction of wound-response genes in

damaged tissues of Arabidopsis and other species

(Zhu-Salzman and others 1998; Rojo and others

1999; Lorenzo and others 2004). This antagonistic

effect may be exerted through ERF1 and other

ERFs, because activation of this TF prevents the

induction of wound-responsive JA-regulated genes

(Lorenzo and others 2004). Thus, ERF1 regulates

differentially two sets of defense-response genes.

On the one hand, it regulates positively the

expression of pathogen-response genes, and on the

other, it prevents JA-mediated induction of

wound-response genes such as VSP2 (Figure 2;

Lorenzo and others 2004; Lorenzo and Solano

2005).

AtMYC2 is another important regulator of ET–JA

interactions in plant defense; interestingly, how-

ever, it operates in the opposing manner ERF1.

Identified as a JA-insensitive mutant (jin1, jasmonate

insensitive-1), AtMYC2 is a key component of the JA-

signaling pathway. Its expression is dependent en-

tirely on COI1 and it has been shown to regulate the

expression of the same two groups of ET/JA-

responsive genes as ERF1. However, in contrast to

ERF1, AtMYC2 induces the JA-mediated expression

of wound-response genes while repressing the

expression of pathogen-response genes (Figure 2).

Consistently, jin1 mutants show increased resistance

to necrotrophic and hemibiotrophic pathogens

(Anderson and others 2004; Lorenzo and others

2004; Nickstadt and others 2004). The AtMYC2

Figure 2. Plant defense response network involving

ethylene (ET), jasmonic acid (JA), salicylic acid (SA) and

abscisic acid (ABA) hormonal pathways. Biotic stress

triggers the synthesis of these hormones and should be

considered to comprise pathogen attack, herbivory and

wounding. Following stimulation, the asymmetric induc-

tion of these pathways and their interaction with one

another allows the plant to fine-tune its defense response

to a specific threat. In general ET and JA are considered to

cooperate, through ERF1, in the induction of defenses

against necrotrophic pathogens whilst repressing wound-

ing and biotrophic pathogen responses. Conversely, SA

induces defenses against biotrophic pathogens via the

transcription factor WRKY70 and represses defenses

against necrotrophic pathogens. Additionally, defense in

response to wounding is JA dependent with AtMYC2

positively regulating genes such as VSP, Lox and Thi2.1 and

negatively regulating pathogen response genes such as

PDF1.2, b-CHI and HEL. Nevertheless, whole genome

microarray analyses are currently showing the complexity

of hormonal interactions in the activation of defense re-

sponses, of which this model network represents only a

simple view. Arrows indicate induction or positive inter-

action, whereas dashed lines indicate repression or nega-

tive interaction. Thicker arrows represent the main ET

pathway.
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function seems to be conserved in dicotyledonous

plants: two homologous proteins with a function

similar to AtMYC2 (JAMYC2 and JAMYC10) have

been described in tomato (Boter and others 2004). In

addition to AtMYC2, AtERF4 is another player reg-

ulating this complex network. As already stated,

AtERF4 negatively regulates expression of PDF1.2,

and its overproduction in transgenic Arabidopsis

renders the plants more susceptible to F. oxysporum

(McGrath and others 2005; Yang and others 2005).

The regulatory roles of these opposing TFs (AtMYC2,

ERF1 and AtERF4) illustrate the complexity of the

signaling network to fine-tune defenses to best suit a

specific threat.

The ET–JA negative interaction in response to

wounding (see above) is not the only example of

antagonism between these phytohormones. In

M. truncatula, ET controls nodule development by

Rhizobium–legume symbiosis (Penmetsa and Cook

1997). Ethylene negatively regulates plant re-

sponses to the rhizobial bacterial signal Nod factor.

This regulation occurs at an early step in the Nod

factor signaling pathway, at or above Nod factor-

induced calcium spiking. Jasmonic acid not only

inhibits spiking but also suppresses frequency of

calcium oscillations when applied at lower concen-

trations. This JA effect is amplified in the ET-

insensitive mutant skl, indicating the antagonistic

interaction between the two hormones for Nod

factor signaling regulation (Sun and others 2006).

Two additional examples of negative ET–JA

crosstalk come from plant–insect interactions. First,

JA-mediated Arabidopsis resistance to Spodoptera lit-

toralis is enhanced in ET-insensitive mutants and is

decreased by treatment with ethephon (Stotz and

others 2000). Second, the ET burst, seen in response

to M. sexta larval feeding in Nicotiana plants, reduces

JA-induced nicotine production (Winz and Baldwin

2001).

Ethylene and SA

It is generally accepted that SA plays a major role in

activation of defenses against biotrophic pathogens,

whereas ET and JA are more usually associated with

defense against necrotrophic pathogen attack.

Additionally, SA and JA/ET defense pathways are

mutually antagonistic (Figure 2) (Thomma and

others 2001; Kunkel and Brooks 2002; Turner and

others 2002; Rojo and others 2003; Glazebrook

2005; Lorenzo and Solano 2005; van Loon and

others 2006). To reiterate, however, this is likely to

be an oversimplified model because cooperative

interactions between ET and SA have also been

reported.

Analyses of mutant and transgenic Arabidopsis

plants have clearly demonstrated the existence of

negative crosstalk between ET and SA in relation to

defense. Ethylene-sensitivity mutants overactivate

SA-dependent defenses (Thomma and others 1998;

Clarke and others 2000), and transgenic plants af-

fected in SA accumulation or signaling overexpress

ET-dependent PR genes. For example, when tomato

nahG plants (with depleted SA) were challenged with

Xanthomonas campestris, they showed an increase in

ET accumulation (O’Donnell and others 2001).

Conversely, SA has been observed to block the syn-

thesis of ET and JA in tomato, thereby inhibiting Pin

accumulation (Peña-cortés and others 1993).

Although mechanistic explanations of this antag-

onistic crosstalk are scarce, several examples have

been reported. Thus, antagonism between ET/JA and

SA pathways requires the activation of proteins such

as NPR1 and WRKY70, which activate expression

of SA-responsive genes while repressing ET/JA-

responsive genes (Spoel and others 2003). Further,

MAPK4, probably working independently of ERF1,

has been found to be a positive regulator of

ET/JA signaling while negatively regulating SAR

(Figure 2). It has been revealed that both ET/JA de-

fense induction and SAR repression involve EDS1

and PAD4 proteins, functioning downstream of

MAPK4 (Brodersen and others 2006).

Constitutive ERF1 overexpression that, as stated

above, promotes the activation of JA/ET-dependent

defenses, reduces tolerance against P. syringae, fur-

ther supporting its role in the regulation of the

negative crosstalk between the JA/ET and the SA

signaling pathways (Berrocal-Lobo and others

2002).

The final example of an antagonistic interaction

between ET and SA-dependent pathways relates to

EDR1, a MAPKKK similar to CTR1. In the edr1

mutant, ET potentiates SA-mediated PR1 gene

expression. EDR1, therefore, negatively regulates

this process. PR1 expression is highly induced by ET

treatment in edr1 mutant plants, whereas it is

almost undetectable in wild-type plants. Conse-

quently, edr1 plants show enhanced resistance to

P. syringae and E. cichoracearum (Frye and Innes

1998; Frye and others 2001).

Several examples of positive network connection

between ET and SA have also been reported

(Schenk and others 2000; Verberne and others

2003). A previously unmentioned example is that

of the hrl1 (hypersensitive response-like lesions1) in

Arabidopsis. This mutant shows constitutive expres-

sion of SA and ET/JA defense genes, increased

accumulation of SA and ET, and enhanced resis-

tance against P. syringae and Peronospora parasitica
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(Devadas and others 2002). It has also been dem-

onstrated that ET induction following P. rapae

feeding primes SA-dependent PR1 expression and

consequently improves defenses against Turnip

Crinkle virus (TCV) (De Vos and others 2006).

Tsi and Pti genes may constitute a confluence

point of ET and SA pathways. Pti4, Pti5, and Pti6

genes encode related transcription factors that be-

long to the ERF family (Zhou and others 1997).

Interestingly, Pti4 protein induction in tomato is

involved in gene-for-gene interaction. The R gene

Pto encodes a protein kinase that confers resistance

to P. syringae pv. tomato strains by specific recogni-

tion of its avrPto gene. Pto kinase is able to phos-

phorylate Pti4 in vitro and thereby enhance its GCC

box binding activity (Gu and others 2000). In

addition, Pti4 is induced by SA, ethephon, and JA

treatments. Pti4 has been identified as a transcrip-

tional activator of PR genes containing both GCC

and non-GCC elements (Gu and others 2000). As

mentioned above, Pti4 overexpressors display in-

creased resistance to the fungal pathogen E. orontii

and increased tolerance to the bacterial pathogen

P. syringae pv. tomato (Gu and others 2002).

Additionally, in tobacco a Tsi ERF gene has been

found to be induced by ethephon and SA treat-

ments. Furthermore, Tsi overexpression induces the

induction of several PR genes, resulting in improved

tolerance to pathogens such as Pseudomonas (Park

and others 2001).

Ethylene and Abscisic Acid

Abscisic acid regulatory function has been exten-

sively studied in relation to plant abiotic stress re-

sponses, such as drought, salt, and cold (Finkelstein

and Gibson 2002). Most examples of ET–ABA

interactions have been described in sugar signaling

(Leon and Sheen 2003), with interactions related to

defense being less well documented. However, the

existence of an antagonistic interaction between

ABA and ET/JA signaling pathways that affects de-

fense gene expression and disease resistance in

Arabidopsis has been described (Figure 2) (Anderson

and others 2004). Exogenous ABA suppresses ET/

JA-responsive defense genes such as PDF1.2, b-CHI,

and HEL while mutations in the ABA biosynthesis

pathway have the opposite effect. Accordingly,

aba2-1 mutants with enhanced levels of these PR

proteins exhibited improved resistance against

F. oxysporum. AtERF4 has been recently shown to

modulate the antagonistic ABA–ET/JA crosstalk.

Thus, AtERF4 expression is induced by ABA, ET, or

JA exogenous treatment, but its overexpression

leads to the inhibition of GCC box-containing

defense genes, ethylene insensitivity, and decreased

ABA sensitivity (Yang and others 2005).

CONCLUDING REMARKS

Ethylene has been implicated in several structural

and biochemical plant defense responses. Its func-

tion is modulated on several different levels.

First, following recognition of a specific attack, ET

biosynthesis is tightly controlled through complex

transcriptional and post-transcriptional biosynthesis

mechanisms. These primary regulatory systems

facilitate a discrete and targeted response to dispa-

rate threats from the moment a threat is recognized.

However, the molecular mechanisms for the initial

pathogen recognition that subsequently activate ET-

mediated responses are still poorly understood.

Furthermore, ET’s modulation of defense is not

‘‘all or nothing,’’ but rather is gradational. Like

plant growth (Pierik and others 2006), it appears

that the level of endogenous ET is pivotal in the

establishment and fine-tuning of suitable defense

responses. Thus, the spatial and temporal variation

in endogenous ET concentration dictates how indi-

vidual plant parts respond to the signal at any given

time. For example, ET concentration not only

determines local/systemic wound response (Rojo

and others 1999), but it has also been demonstrated

that ET concentration can affect the level of phy-

toalexin accumulation (Zhao and others 2004). The

importance of ET’s concentration to the plant’s de-

fense response may have led to the evolution of

ethylene-producing pathogens. By interfering with

the plant’s endogenous ET status, these pathogens

are able to prevent or alter the defense response to

their advantage (Aloni and others 1998).

Finally, ET works within a phytohormone net-

work. Thus, disease resistance is regulated by

multiple signal transduction pathways in which ET,

JA, SA, and ABA function as key signaling mole-

cules. Wounding, pathogen attack, and herbivory

trigger asymmetric activation of these signaling

pathways, thereby affecting the final balance of

interactions and determining the specific reaction to

the initial stimulus. Deciphering this crosstalk be-

tween ET-, JA-, SA-, and ABA-dependent pathways

in plant cells is a major challenge facing us as we

seek to understand how the cell orchestrates this

optimal response to a specific stress. Meeting this

challenge will require identification of the molecu-

lar components involved in each signal transduction

pathway and the characterization of their contri-

bution to the regulation of the network. Post-tran-

scriptional regulatory mechanisms such as protein
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stability, protein-protein interactions, or covalent

protein modifications may be key for this regula-

tion. Technological advances, such as whole tran-

scriptome analysis and proteomics will be critical to

improving our comprehension of this complex sig-

naling network.
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